Detection of the Missing Baryons through thermal and kinetic Sunyaev-Zeldovich effect

Yin-Zhe Ma (马寅哲) University of KwaZulu-Natal, Durban, South Africa NAOC—UKZN Computational Astrophysics Centre

Collaborators: D. Contreras, C. Hernandez-Monteagudo, G. Hinshaw, A. Hojjati, Y.-C. Li, K. Moodley, M. Remazeilles, D. Scott, H. Tanimura, L. Van Waerbeke, J. Zuntz, & Planck team

0

3

2

Ζ

X-ray: $\sim n_e(r)^2$

thermal Sunyaev-Zeldovich effect

Weak Lensing

and compare with halo model prediction and hydrodynamic simulation

YZM, L. Van Waerbeke et al., 2015, JCAP A. Hojjati, I. McCarthy, J. Harnois-Deraps, YZM et al., 2015, JCAP

kinetic Sunyaev-Zeldovich effect

Peculiar velocity field

Planck intermediate results XXXVII, 2016, A&A C.Hernandez-Monteagudo, YZM, F-S Kitaura, W.Wang et al., 2015, Phys. Rev. Lett.

Dispersion measurement of kinetic Sunyaev-Zeldovich effect

Planck intermediate results LIII, A&A in press, arXiv: 1707.00132

Stacking of LRG pairs to search for filament

--- see Hideki Tanimura's talk

The thermal Sunyaev-Zeldovich effect

Thermal Sunyaev-Zeldovich effect (tSZ):

$$\frac{\Delta T}{T} = \left[\eta \frac{e^{\eta} + 1}{e^{\eta} - 1} - 4 \right] y \equiv g_{\nu} y$$

$$g_{\nu} \equiv (\eta(e^{\eta}+1)/(e^{\eta}-1))-4$$

$$\eta = \frac{h\nu}{k_B T_{\text{CMB}}} = \frac{h\nu_0}{k_B T_0} = 1.76 \left(\frac{\nu_0}{100 \text{GHz}}\right)$$

$$y = \frac{k_B \sigma_T}{m_e c^2} \int_0^l T_e(l) n_e(l) dl$$

SZ map from linear combination of Planck frequency bands: $v_i = 100$, 143, 217, 353 GHz.

$$T_{SZ}/T_0 \equiv y \ S_{SZ}(v_i) = \sum b_i \ T(v_i)$$

$$1. \sum b_i S_{SZ}(v_i) = 1$$

$$S_{SZ}(x) = x \coth(x/2) - 4 \quad (x = h\nu/kT)$$

$$2. \sum b_i S_{CMB}(v_i) = 0$$

$$S_{CMB}(x) = 1$$

3.
$$\sum_{i} b_i S_{"dust"}(v_i) = 0$$

$$S_{"dust"}(v_i) = v^{\beta} g(x)$$

Planck Full-Sky Maps - 4 Frequencies

Planck SZ y map, version E

Reject $\beta_{dust} = 2.0$, $r_{2.0}(100 \text{ GHz}) = 0$

Planck SZ no-y map, version E

Reject $S_{SZ}(v)$, retain $\beta_{dust} = 1.8$

CFHT mass map:

154 deg^2 in 4 patches

Van Waerbeke et al., 2014, MNRAS

Halo model:

Ma et al. fits a halo model to the observed correlation function. A β model fits well, but in this context the data requires a 2-halo term to fit the large angular scale separation.

YZM, L. Van Waerbeke, G. Hinshaw, A. Hojatti, D. Scott, 2015 JCAP, arXiv: 1404.4808

	$10^{12} \mathrm{M}_{\odot} 10^{14} \mathrm{M}_{\odot}$	$10^{14}~{\rm M}_{\odot}{\rm -}10^{16}~{\rm M}_{\odot}$
$(0.01-1) r_{\rm vir}$	26%	28%
$(0.01-1) r_{\rm vir}$ $(1-100) r_{\rm vir}$	14%	32%

By applying the virial theorem with z = 0.37, for the mass range 10^12-10^16 M_sun, we get T_e = 10^5-10^8 K.

YZM, L. Van Waerbeke, G. Hinshaw, A. Hojatti, D. Scott, J. Zuntz, 2015 JCAP

Simulation vs data

	Simulation		Halo model
Bin	Signal	Baryon	Signal
Low mass, inner radii	7%	6%	26%
Low mass, outer radi	12%	24%	14%
High mass, inner radii	56%	4%	28%
High mass, outer radii	25%	7%	32%

Kinetic SZ studies

Method	Reference		kSZ data	Tracer type	Tracer data	Significance
Pairwise temperature difference	Hand et al. (2012) ^a Planck Collaboration Int. XXXVII (2016) Hernández-Monteagudo et al. (2015) Soergel et al. (2016) De Bernardis et al. (2017) Sugiyama et al. (2017) ^b Li et al. (2018) ^b		ACT Planck WMAP SPT ACT Planck Planck	Galaxies (spec-z) Galaxies (spec-z) Galaxies (spec-z) Clusters (photo-z) Galaxies (spec-z) Galaxies (spec-z) Galaxies (spec-z)	BOSS III/DR9 SDSS/DR7 SDSS/DR7 1-yr DES BOSS/DR11 BOSS/DR12 BOSS/DR12	2.9σ $1.8-2.5 \sigma$ 3.3σ 4.2σ $3.6-4.1 \sigma$ 2.45σ 1.65σ
$kSZ \times v_{pec}$	Planck Collaboration Int. XXXVII (Schaan et al. (2016) ^c	(2016) ^c	Planck ACT	Galaxy velocities Galaxy velocities	SDSS/DR7 BOSS/DR10	$3.0 – 3.7 \sigma$ 2.9σ , 3.3σ
$kSZ^2 \times projected$ density field	Hill et al. (2016), Ferraro et al. (2016) ^d		Planck, WMAP	Projected overdensities	WISE catalogue	$3.8 – 4.5 \sigma$
kSZ dispersion	This work		Planck	Clusters	MCXC	2.8σ

Planck intermediate results XXXVII, 2016, A&A C.Hernandez-Monteagudo, YZM, F-S Kitaura, W.Wang et al., 2015, Phys. Rev. Lett.

SZ map from linear combination of Planck frequency bands: $v_i = 100$, 143, 217, 353 GHz.

$$T_{SZ}/T_0 \equiv y \ S_{SZ}(v_i) = \sum b_i \ T(v_i)$$

1.
$$\sum b_i S_{SZ}(v_i) = 1 \rightarrow 0$$
! $S_{SZ}(x) = x \coth(x/2) - 4 (x = hv/kT)$

2.
$$\sum b_i S_{CMB}(v_i) = 0 \rightarrow 1 ! S_{CMB}(x) = 1$$

3.
$$\sum b_i S_{"dust"}(v_i) = 0 \qquad S_{"dust"}(v_i) = v^{\beta} g(x)$$

Planck SMICA, SEVEM, NILC maps

Dispersion measurement of kSZ

Method	Reference	kSZ data	Tracer type	Tracer data	Significance
Pairwise temperature difference	Hand et al. (2012) ^a Planck Collaboration Int. XXXVII (2016) Hernández-Monteagudo et al. (2015) Soergel et al. (2016) De Bernardis et al. (2017) Sugiyama et al. (2017) ^b Li et al. (2018) ^b	ACT Planck WMAP SPT ACT Planck Planck	Galaxies (spec- z) Galaxies (spec- z) Galaxies (spec- z) Clusters (photo- z) Galaxies (spec- z) Galaxies (spec- z) Galaxies (spec- z)	BOSS III/DR9 SDSS/DR7 SDSS/DR7 1-yr DES BOSS/DR11 BOSS/DR12 BOSS/DR12	2.9σ $1.8-2.5 \sigma$ 3.3σ 4.2σ $3.6-4.1 \sigma$ 2.45σ 1.65σ
$kSZ \times v_{pec}$	Planck Collaboration Int. XXXVII (2016) ^c Schaan et al. (2016) ^c	Planck ACT	Galaxy velocities Galaxy velocities	SDSS/DR7 BOSS/DR10	$3.0 – 3.7 \sigma$ 2.9σ , 3.3σ
$kSZ^2 \times projected$ density field	Hill et al. (2016), Ferraro et al. (2016) ^d	Planck, WMAP	Projected overdensities	WISE catalogue	3.8 – 4.5σ
kSZ dispersion	This work	Planck	Clusters	MCXC	2.8σ

Planck intermediate results LIII, A&A in press, arXiv: 1707.00132

Global filter:

$$W_{\ell} = \frac{B_{\ell}}{B_{\ell}^2 C_{\ell}^{\text{CMB}} + N_{\ell}} = \frac{B_{\ell}}{C_{\ell}^{\text{noise}}}$$

1526 MCXC clusters outside Galactic mask

	True positions	Random positions	0.4	
Mean	-0.015 1.38 0.37 4.44	-0.021 1.23 0.09 3.29	0.3	Cluster positions Random positions
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.2	
			0.1	
			0.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Then we choose 5000 random catalogues 200

Map	$\sigma_{\rm MCXC} \times 10^5$	$\sigma_{\rm ran} \times 10^5$	$\sigma(\sigma_{\rm ran}) \times 10^5$
2D-ILC	1.17	1.10	0.022
SMICA	1.11	0.97	0.019
NILC	1.09	0.97	0.019
SEVEM	1.12	1.00	0.020
Commander	1.09	1.03	0.020



$$\hat{s}^2 = \frac{1}{N_c} \sum_i \delta_i^2 - \frac{1}{N_c} \sum_i \hat{n}_i^2$$

Map	$E[s^2] \times 10^{11}$	$(V[s^2])^{1/2} \times 10^{11}$	S/N
2D-ILC	1.64	0.48	3.4
	3.53	0.37	9.4
	2.75	0.38	7.3
	3.19	0.40	8.1
	1.47	0.42	3.5



$$P(s_{\rm w}^2 < 0) = 0.07\%$$

#### Corrected for lensing contribution:

$$(\hat{s^2}) = (1.35 \pm 0.48) \times 10^{-11}$$

 $2.8 \sigma$ 



$$\langle v^2 \rangle = (123\,000 \pm 71\,000) \,(\,\mathrm{km}\,\mathrm{s}^{-1})^2$$

Statistical homogeneity on 600 Mpc scale

#### Conclusion:

- We probe gas by cross-correlating the Sunyaev-Zeldovich map from Planck with CFHTLens lensing mass maps and SDSS LRG pair catalogue to probe gas distributions that are difficult to trace.
- Significant correlation is seen with lensing mass. Data is reasonably well fit by a halo model, but requires gas out to 5 × virial radius. By the virial theorem, the temperature of this gas exactly corresponds to the 10^5—10^7K, i.e. warm-hot intergalactic medium. This is consistent with the finding from numerical simulation.
- We use the aperture photometry filter to the kSZ map, and find the maximum correlation between kSZ-velocity field is at theta=8 arcmin, corresponding to gas outside virial radius.
- We also show the detection of the temperature dispersion effect of kSZ at 2.8 sigma C.L, which opens a new way of analyzing the gaseous distribution of galaxy clusters through higher order statistics.
- These studies will potentially provide better measurement on the intergalactic baryon component.