

How Supernovae-driven **Hot** Outflows Regulate Circum-galactic Medium?

Miao Li (李邈)
Flatiron Research Fellow
Center for Computational Astrophysics (CCA), Flatiron Institute, New York

Stephanie Tonnesen (CCA)
Greg Bryan, Jeremiah Ostriker (Columbia Univ.)

— CGM: galactic outflows interact with cosmic inflows

But most current feedback models rely on parameter-tuning e.g. mass/energy/metal fluxes of outflows

Our approach:

- First, study SNe FB using high-resolution sims, and quantify parameters (Li+15, 17a,b)
- Then, use the results as sub-grid models in large-scale sims, and study its impact in galaxy formation (Li+ in prep)

High-resolution simulations: A kpc-patch of galaxy disk

- Stratified medium, explode SNe near mid-plane
- (sub-)pc resolution, resolving multiphase ISM
- SNe self-consistently regulate ISM and launch outflows

Li+17a

Quantify SN-driven outflows —

- Mass loading $\eta_m = \dot{M}_{outflow} / \dot{M}_{SFR}$
- Energy loading ne≡ Eoutflow / Esn
- Metal loading $\eta_{metal} = M_{metal,out} / M_{metal, SN}$

Loading factors measured at 1-2.5 kpc above the disk

input (Σ_{gas} , Σ_{sfr}) along Kennicutt relation

 Σ SFR= 150 Msun * Σ SN

our models

Bigiel+08

 $\eta_{m,h} \propto \Sigma_{SFR} \land -0.44$

 η E,h~0.25 +/- 0.1

 η metal, $h \sim 0.5 + /- 0.1$

 hot gas carries most energy flux

- hot gas carries most metal flux
- Metallicity: hot gas> ISM mean

Hot: T~ 10^6-7K; the only phase that can travel far

Li+17a

Galaxy-scale simulation

Add only hot outflows

Hot gas around MW-like galaxies: What are observed?

- Metals exist far away from MW-like galaxy: >~150 kpc (e.g. Tumlinson+11)
- Galaxy corona X-ray emission: a few percent of SN energy (e.g. Anderson+10, Mineo+12, Li & Wang13)
- MW: n(R~50 kpc) ~ 10^-4 cm^-3 (ram pressure stripping of LMC (Gatto+13, Salem+15)
- MW: N_O (OVII +O VIII) ~ 3e(16+/-0.5) cm^-2 (Gupta+12, Fang+15)

• Using a physically-based outflow model, together with observational clues, what can we learn about the elusive WHIM around galaxies?

fiducial model:

- MW-like setup at z=0, isolated, box size: 800 kpc Gravitational potential: DM (Burkert) + stellar disk + bulge SFR: 1 Msun/yr
- Outflows added by hand, at 2-3 kpc above mid-plane $\eta_m = 1.0$; $\eta_E = 0.3$; $\eta_m = 0.5$
- initial halo gas $n_0 = 1e-5/cc$ [mean density of halo], $T_0 = 10^6$ K, no gaseous disk
- Enzo: Eulerian hydro code, same as small-box sims
- Resolution: 0.5kpc (inner 50 kpc of box); 1kpc (50- 100kpc); 2kpc (100-200 kpc), etc.

Free parameters: n_0

Fountain flow, Metal goes to ~ 30-40kpc

X-ray emission map

most bright at R20 kpc

• total Lx: 2-8% SN energy

How do results depend on model parameters?

1. Changing n_0:

Lx & n(50kpc) favor
 n_0 ~ 1-3 x10^-5 cm^-3

1. Changing n_0:

Lx & n(50kpc) favor
 n_0 ~ 1-3 x10^-5 cm^-3

2. Changing SFR (keeping n_0 =1e-5/cc):

SFR = 1 Msun/yr, η m =1, η E=0.3, η metal=0.5 (fiducial)

Fountain

SFR = 10 Msun/yr, $\eta_m = 0.2$, $\eta_E = 0.3$, $\eta_{metal} = 0.5$ (2x mass flux, 10x energy flux)

Breakout!

Li+ in prep

X-ray emission map:

 $(n_0 = 10^{-5}/cc)$

(fiducial)

SFR = 1 Msun/yr

Lx = 2e39 erg/s

Breakout leads to significantly reduced Lx — inconsistent w/ obs

SFR = 10 Msun/yr

Lx = 5e38 erg/s

For SFR = 10 Msun/yr

For SFR = 10 Msun/yr

 10^{41}

Halo gas: broad distribution of metallicity

- as a result of (incomplete) mixing of outflows and pre-existing gas

SFR: 10 Msun/yr $n_0 = 6e-5/cc$

• Small-box simulations:

Summary

- Hot outflows carry most energy and metals
- $\eta_m = 0.8(\Sigma SFR/0.008 Msun/kpc^2/yr)^-0.44$, $\eta_E \sim 0.3$, $\eta_{metal} \sim 0.5$
- From n(50kpc) and Lx, n_0 ~ 1-3e-5 cm^-3 is favored for current MW
 - M_CGM (T>1e5, R<200kpc) ~ 2-4e10 Msun
- For MW halo, SNe-driven hot outflows
 - Eject ~ 1e10 Msun hot gas over Hubble time —> not much mass
 - eject ~50% of metals ever produced -> lots of metals
 - Can reach >150 kpc (when SFR ~ 10 Msun/yr), and explain N_oxy,hot
- The observed Lx \propto SFR implies n_0 \propto SFR $^0.5$