The Baryon and Metal Content of Hot Galaxy Halos

Joel N. Bregman, Edmund Hodges-Kluck, Jiangtao Li, Zhijie Qu, Yunyang Li, Mike Anderson, Xinyu Dai

Pictures In My Mind

Springel et al. Simulations predict hot halos to $^{\sim}R_{200}$. Model-dependent

Near Galaxy Disk, ~0.05 R₂₀₀: Galactic Fountain(s) + accretion

Fitting A Density Model

- OVII and OVIII absorption and emission lines (2x10⁶ K) from XMM (Miller & JNB 2013, 2015; Li & JNB 2017)
- Fit a "beta" model, $n(r) = n_o (1 + (r/r_c)^2)^{-3\beta/2}$
 - $n(r) \approx n_o (r/r_c)^{-3\beta}$ (not sensitive to core radius)
 - Flattened model does not improve fit
 - Need a hole in central 1.2 kpc (Fermi bubble to the rescue)
- Also include a disk component with a scale height

Absorption sightlines

We use X-ray data to detect hot gas

Absorption by O VII Milky Way Gas at 21.6 Å (0.56 keV) (about 30x column from O VI) Various authors: e.g., Hodges-Kluck et al. 2016) Emission from O VII (0.56 keV) and O VIII (0.65 keV) from Milky Way Henley & Shelton (2012, 13)

Dimmest toward anticenter
Brightening as you look across
the Milky Way
Avoid Fermi Bubbles region
Henley and Shelton (2012, 13)

Optical Depth Effects

- O VII is He-like with a triplet one resonance line
- O VIII is H-like, so we use the Ly alpha line
- Optical depths ~1; depends on rotation, Doppler b
- Yunyang Li & JNB (2017)

Masses: Optical Depth Corrections

Significant error reduction with MCRT treatment (Li & JNB 2017) $\beta = 0.51 + /- 0.02; \ b_{turbulence} \sim 100 \ km/s; \ M_{emission} \ (R_{vir}) = 2.8 + /- 0.4 \ E10 \ M_{sun}$ Exponential Hot Disk: $z_h \sim 1.3 \ kpc; \ M_{disk} \sim 1.8E8 \ M_{sun} \ (minor component)$ Same results for fit with O VII lines and O VIII lines Can't put much mass in exponential disk — overproduces X-rays

This hot halo is not the missing baryons within R_{vir}

Miller & JNB (2013, 2015)

Where are the bodies buried?

- Hot gas mass is mainly constrained within 50 kpc
- Extrapolate from 50 kpc to R_{vir} (250 kpc)
- Could the density distribution flatten significantly beyond 50 kpc?
 - This would give more mass within R_{vir}
- No evidence for this
- N(O VII) toward LMC would be about half that toward a background AGN
 - Not seen
 - Bregman et al. 2018 ApJ 862, 3

For β < 0.25 (3 β < 0.75), missing baryons lie within R₂₀₀ But our fits show that β = 0.52 ± 0.03 (within 50 kpc)

- Another Check: Fraction of O VII lies beyond LMC/SMC
- All baryons within R₂₀₀ flatter density distribution half of N(O VII) lies beyond LMC/SMC
- Not seen: results consistent with β near 0.5
- Missing baryons not hot and within R₂₀₀

Where are the Missing Milky Way Baryons?

- For a cosmological f_{bar} of 0.157 (Planck 2105)
 - M(stars + cold gas + dust) = 6-7 x 10^{10} M_{\odot}
 - $M_{vir} = 1-2 \times 10^{12} M_{\odot}$
 - $M_{\text{missing}} = 1-3 \times 10^{11} M_{\odot}$
- If the hot gas density profile extends to the virial radius...
- $M_{hot} = 3 \times 10^{10} M_{\odot}$
- Hot Halo gas contributes < 20% to the missing baryons
- Profile would need to extend to 2-3 R_{vir} to account for all of the Milky Way's missing baryons

Rotation of the Milky Way Hot Halo

You can see the Galaxy rotate!

Stationary Hot Halo

Co-Rotating Hot Halo Miller et al. (2015)

Look Up: Net Accretion or Outflow

Rotation of the Milky Way Hot Halo

- From O VII absorption line studies (Hodges-Kluck et al. 2016)
- Data exclude stationary halo
- $V_{rot} = 183 + /- 41 \text{ km/s}$
- Most of this gas is within 50 kpc
- Accretion rate < 6 Msun/yr
- Consistent with models

The Metallicity of the Halo Gas

- *Minimum* metallicity given by the combination of the pulsar dispersion measure and O VII, O VIII absorption columns
 - Electron column to LMC fixed by pulsar DM
 - N(OVII), N(OVIII) dominated by material between LMC and MW
 - Divide one by other: $Z > 0.3 Z_{\odot}$
- Best fit with emission, absorption, and MCRT
 - 0.3 < Z < 0.9 solar (JNB et al. 2018)
 - Absorption column = n(OVII) L
 - Emission measure = n_e n(OVII) L
 - Can solve for metallicity, n(OVII) / n_e

Is This Metallicity Too High?

- Not really
- Cosmic metallicity is 0.09-0.17 solar (Moaz; Shull)
- Most of these metals (80%) are unaccounted for
 - Probably in hot phase
- Missing baryons (40%) has the rest of the metals
 - Metallicity of 0.2-0.3 solar
- There will be plenty of metals to detect in the missing baryons (good for future missions)

Other Spirals Are Similar in X-Rays

- Easier to see X-rays in more massive spirals (2-6L*)
- X-ray emission seen to ~130 kpc from stacking 6 galaxies
- M_{hot} ~ 1.3E11 M_{sun}
- Missing baryons not within R₂₀₀
- J-T Li et al. 2018 ApJ 855, 24
- Anderson et al. 2016 MNRAS, 455, 227

Mutually Inconsistent Conclusions (not everyone can be correct)

- The missing baryons around galaxies are....
 - Warm ionized (COS-Halos)
 - Hot (~T_{vir}) and within R₂₀₀
 - Hot (~T_{vir}) and extended beyond R₂₀₀
- Warm ionized halo gas mass may have been overestimated
 - Multi-component gas
 - Ionization not just from photons
 - Other groups get masses 3-8x lower than COS-Halos
 - Significant mass in extended disks, not halos
 - Certainly the MW and M31 do not have ~1E11 Msun of warm gas
- Most Likely (today): Hot (~T_{vir}) and extended beyond R₂₀₀
 - Consistent with SZ work (but the S/N is not impressive)
 - Consistent with extrapolation of X-ray data (but it's an extrapolation)

Needed For Making Progress

- Ability to Detect Galaxy Halos to 0.3-2 R₂₀₀
- Absorption: *Arcus* (Explorer, Phase A); launch 2023
- Absorption & Emission
 - Athena (ESO flagship); launch 2029
 - Lynx (potential NASA flagship); launch 2034
- Emission
 - HaloSat for Milky Way (10 deg); Kaaret; smallsat operating!
 - HUBS & Super-DIOS, 3' (China & Japan); 2029
- CMB-Stage 4; late 2020's
- UV Emission: CAFÉ (China); 2028

Things to Remember

- Milky Way Hot Gas
 - Exponential hot disk is minor component
 - Within 50 kpc, Spherical halo with n $^{\sim}$ r^{-3/2}, v_{rot} $^{\sim}$ 180 km/s, b_{turb} $^{\sim}$ 100 km/s
 - Extrapolated to R₂₀₀, 3E10 Msun; not the missing baryons
 - If missing baryons are hot, halo must extend to ~2R_{vir}
 - Metallicity 0.3-0.9 solar
- Other spirals have similar density profiles
- Gas around massive galaxies (stacked) seen to 130 kpc (0.4 R₂₀₀)
- Let's get some new observatories